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Abstract

The determination of production lot sizes and the assignment of

storage space in a warehouse for the produced items are usually treated

as two separate problems: The former providing input (space needed) to

the latter. In this paper, we treat the decision problems as one with

the objective of minimizing total setup, Inventory carrying, and ware-

house material handling cost. We treat the minimum material handling

cost as a continuous function of the lot sizes and develop an algorithm

for finding locally optimal solutions of the derived optimization problem.

Computational experience is provided and applications to autcomted

warehousing systems are discussed.
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* 1. Introduction

In any automatic warehousing system utilizing computer-controlled

stacker cranes for high volume material handling, a rather broad class

of decision problems can be identified. The function of the system is

the automatic control of the storage and retrieval of items in a warehouse.

As is briefly described in r43, and r6j, Incoming items are assigned to

pallets, perhaps several items to a pallet, and then a minicomputer

assigns the pallet to a location in the storage racks. The pallet

contents and its location are recorded in computer memory. The material

handling is done by automatic stacker cranes.

When a request for an item in storage is received, the computer

obtains the pallet location address from computer memory and the stacker

crane retrieves the pallet. Once the material is removed from the pitllet,

the pallet may be stored for future use if it is empty, or returned to the

storage location if it still contains items.

Decision problems associated with automatic warehousing systems are

classified in [6] as design and scheduling. Design questions involve such

things as the number of stacker cranes to be used, the physical dimensions

of the storage bays, the number of storage bays, and perhaps even the

physical dimensions of the warehouse.

Scheduling questions involve pallet assignment (assigning items to

pallets), storage assignment (assigning loaded pallets to storage locations),

and interleaving (the sequencing rules for storage and retrieve requests).

It is clear that design and scheduling questions should be addressed

simultaneously to obtain the most benefit from the automatic warehousing

system.



;everl recent papers [4], [63, [71 have addressed the storage

Annigvmient problem, with the objective of assigning items to storage

,'cfntLion it% nroer to minimize total material harsling time or cont.

In r6] several ntorage assignment rules are compared under the assumption

of no interleaving. In [ 43, the analysis is extended to the case with

interleaving. Heskett ! 5] proposed that inventory items should be

assigned to storage locations according to the cube order index (COI)

rule. The COI is the ratio of the space required per item and the order

frequency of the item. An application of the use of the COI rule can be

found in [7). It has been shown r 3, that if a certain "factoring

assumption" holds, the COI rule will minimize total material handling cost

(or time). An underlying assumption in the above references is that the

quantities of each particular class of items to be stored is known

apriori.

In a production setting, the amount of product warehouse space

needed for a particular item is traditionally determined on the basis of

inventory and production cost considerations. As an example, if a

company is using economic order quantity analysis to determine production

lot sizes, then the production quantity decisions resulting from this

analysis will determine the amount of warehouse space which must be

allocated to each product. Thus, traditionally, the production lot size

decisions and the warehouse allocation decisions are treated independently,

the former providing information (space needed) to the latter.

This paper concerns treating these two decision problems as one.

That is, to analyze the problem of determining order quantities for

several products and decision rules for allocating warehouse space for

z2



these products in order to ilInise total production cost, inventory

carrying cost and material handlin cost. Thus, .In a sense we awe

expanding the definition of "scheduling" as given in []and 61to

include the sta nu d~em~Ion of production lot sizes and storage

locations for fi nal products.

In a recent paper, Wilson t133 addressed the above problemO but

treated the allocation problem as a discrete problem. That is, he

assiued a finite number of locations in the warehouse and treated the

space allocation problem as an assigmmt problem. In treating the

space allocation problem in this fashion,, a problem with a large nuber

of warehouse locations becoms difficult to solve E13]. 3n this paper,, we11 treat the space allocation problem, as a continuous layout problem r3)*

This Is the approach taken in Elk], (6),9 [10] sad [ 121.

There is little loss in using the continuous approach. -The vast

majority of automated warehouses which could benef it from this analysis

* are large enough that "rounding off" a continuous solution to fit the

actual discrete locations in the warehouse would not affect the actual

solution objective function greatly. The continuous approach has the

in por tant advantage of relative ease of solution.

Consider a production vector (q1 , Q2 t *got qn)q where Q, represents
the production lot size of product i (we suppose that the cocpazw produces

n different products). The total yearly production, inventory carrying,

and material handling cost for this production vector can be expressed as:

where p1(q1) represents the yea&y7 production oost of product 41

(as a function of Q1), I1(Qi' represents the yearly inventory carrying

cost of product i (as a function of Q and M(Q1 , 00.1 Yn represents



the minjn yearly material bandling coat as a function-of the production

vector. 2hat is, given the production vector, N represents the material

hanalin coat which results from an optimal (cost minimizing) storage scheme.

Note that we have treated the production and inventory carrying coats as

separable by product. in general, this is not a bad assuption if

sufficient production capacity is available. However, the yearly material

handlg cost is not separable since the material hand'in cost for product ±

depends not only on Q,. but also on all QJS j i. This dependence is

easily seen by noting that material handling cost arises from the storage

and retrieval of items in a warehouse. The cost for movement of item i

depends upon the amount of warehouse space required for items other than

item 1.

Under the classical derivation, the functions PI(Q4) and 1,(q,)

are convex functions of their arguments. In general, the function M(q1,

*'0 Qn) is not a convex function of (Q, , %). but by treating

the space allocation problem as a continuous layout problem, and assumin

that material handlin cost is a linear function of the distance between

item location in the wrehouse and the warehouse input/output (I/O) point

(loading Sock), we can derive a closed form expression for W(Q, *.., %),

once an *ordering" relation between the q Is detezrined. For a fixed ordering

of the Q, M(.1, s.., %) Is differentiable.

The main advantage of treating the problem as formulated In (1) Is

that the problem size is drastically reduced ova the formulation as given

by Wilson. in Wilson's formulation if there are a discrete storage loca-

tions, then the number of variables is a times the number of products.

Under the formulation in (1), the number of variables is equal to the am-

ber of products.

....• .... -...." ' ' .... " "- "- ,u ... m ,. .e .. .. .. .... .. .... I I ii ... .. .. . fl nl : ... .. I .... .. .. .. . ...



At this point we give a brief overview of the paper. In Section 2 we

outline the assumptions and notation used in later sections. In Section 3

ye analyze the underlying problem when the crane travel is assumed to be

rectilinear or Tchebychev C12], and formulate (1) for this case. we provide

an algorithm to find locally optimal solutions to the resulting problem and

give coputational results. In Section 4 we examine a special case of the

problem formulated in Section 3 and relate the resulting problem to a single

processor scheduling problem. Globally optimal solutions for this problem

can be efficiently obtained for medium sized problems (n < 25).

!
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2. Assumptions and Notation

An mentioned in, the previous section, we will treat the storage

runsily.,nt problem as a continuou layout problem. We assume that

during each storage trip from the I/O point to the storage area, the

stacker crane will carry only one item. Further, during any retrieve

trip, only one item will be transferred from the storage area to the I/O

point. We also assume that the material handling system operates with no

interleaving. This basically means that the crane returns to the I/O

point between simultaneous move requests (either store or retrieve). The

material handling cost for an individual trip to or from the storage area

will be a linear function of the time involved in the trip. We allow

for the possibility that each item may have its own linear function.

let t be the cost, per unit of crane travel time, for item i. The actual

time for material loading or unloading is ignored. As is pointed out in

[61 these times are small comnpared to crane travel time. We analyze a

system which consists of a single crane and one storage rack (area).

It is easiest to visualize the storage area as a plane oriented in

the vertical direction (see Figure 3). The analysis is easily extendable

to the case of a single crane serving a single two sided aisle, however

this case unnecessarily complicates the analysis.

In this paper we assume that the production cost function P 1(Q6) is

of the classical form. tat is, if Di is the yearly demand rate for Item I

and if C1 is the setup (or order cost) associated with each lot of item i,

then Pt(Q) - Ct Dt/q t . We remark that more complex production cost

6



functions can be handled. Similarily, we could consider more complex

inventory carrying cost functions, but we assume that I (q 1 ) = kiQ1/2,

where the coefficient ktreflects the cost of item i, the company's cost

of capital, etc. Since we will be dealing with storage area for each of

the items, let AIrepresent the area necessary to store one unit of item i.

The form of the function M(Q1, . n ) in (1) will be dependent

upon the crane travel assumptions, and the physical dimensions of the

storage area. In Section 3 we analyze the problem under the assumption

that the crane can travel, simultaneously, both horizontally and vertically.

7



I
3. Tchebychev Crane Travel

In this section, we asme that the I/O point is located in a corner

of the storage area (as shown in Figure 1). Further, assume that the

crane can travel, simultaneo sly, in both the horizontal and vertical

directions. Let (0,0) be the coordinates of the location of the I/O

point, and any point in the storage area has coordinates (x,,y), where

x > 0, y> 0 (See Figure 1).

Let vland v. be the horizontal and vertical speed, respectively, of

the crane. If an item is stored at location (x,y) in the storage area, the

total time for the crane to travel between the I/O point and the location

of the item is max fx/v y/v2j, and the total crane travel time for storage,

and eventual retrieval of this item is 4 max [x/V1 , Y/v 2 j, where the number

4 reflects two round trips between the I/O point and the location of the

item.

To obtain insight into the problem, we will initially formulate

expression (1) for the single item case; thus, suppose n=l. For a fixed

value of %, it can be shown (see D3I), that under the assumption that the

material handling cost is linear in travel time, the optimal storage layout

for the single item is a region, of area A1 Q1 , enclosed by a contour of

the function f(x,y) - max [x/vl, y/v 2 j. Following the development in 13),

let z be the functional value of a contour of f. The area, q(z) of the

optimal storage region can be expressed as a function of time by q(z) -vv 2 z
2.

Since the total area of the storage region must equal A 1Q 1, set A1 0 -vlv 2 .

Thus, the value of the function f at the boundary of the storage region

is z. - (A 1Ql/vlV2)t.

The average time for the crane to travel from (to) the I/0 point to

8



Since for each Item the crane sakes )& one-way trip. between the loca-

Prio toformuaIting and analying the n item. case, we demnonstrate that

teminimization of (1) for the case nail over Qlt0 is relatively

straightforward.

Althm1'*' P11 N 3D/ n I(j / are convex in Q1, it is

cler tat (Qi) is not convex in %1* However, we show that there exists

a siglelocal minimin of T(Q1 ) over Q10 mnd thus any of a variety of

oedimensional search procedures (see r9 1 or r3j41 will minimize T(%).
Let 0 1 1,~ k./2, and p3 u(8t 1D1 f3)(Aj/~ 2 ~

where clearly aI>0o, i - 1,2, 3. Thus,

T(Q1)m N p1/'Ql + P2Q1 + 0 3Q~J. (2)

Property 1 There exists a single local mmin., Q , of T(%1) on

[Q11q 01.

Proo: Since T(Q1 ) -mas either q,-0 or -, +.n mand since T is~

continuous and Is finite for any positive finite Q1 , it follow that

there exists at least one positive finite local minimin of T.

Since T is differentiable everywhere on fQ.Q 01, T' a 0 at any

local minim,. of T. Differentiatlng (2) gives

T1( =-A 2  + P 3Q */2.(3

9



For any 1 > 0, T (Q1) *0if and onlyif QT (Qj) 0. Thus, multi-

plying (3) by Q and setting the result equal to zero gives QIT (Q1) =

-0 I/% +2 Q +F3%i/p = 0. Since Ri > 0, i = 1,2,3, Q1T (Q) < O for suffl-
cently 'mall Q > 0 and QT (Q,) - 0 for sufficiently large QI - O. Further-

aoro, . 1T ( 1 ) in strictly increasing on (NQ{0, - 0. Since r(Q1) it; con-

tinuous, it follows that there exists exactly one point Q. 0 such that

Q1 * T (Q*) = 0 and hence T*(%,*) = 0.

We reark that T(Ql) is psuedo-convex on jQ1 > 0) since (2) can be

written as 0(Q)/. 1 , where 0(%) is positive and convex on 1Q1 ,1 l > 0] (see

r l, pp. 154-156).

We now formulate the n item case where we rely heavily on the notation

and development in [31. Let L = ((x, y) I x - 0, y O, i.e., L denotes

the set of points in the storage rack. As before, the travel time function

to any point (x,y)f L is expressed by f(x,y) = max fX/v,. y/v2). We
now formulate a closed form expression for M(Q1 , ... , Q) at any fixed

N' "''' Qn1. Let tSI, i = 1, ... , n) be a collection of nonoverlapping

subsets of' L (a layout) such that the area of Si = Ai Qi, i = 1, ... , n.

H(LA) denotes the collection of all such layouts. If item i is assigned

-storage region Si, the average one way travel time between the I/O point

and the location of an item i is

(1 /A ic )i

S i

The yearly material handling cost for item i is

( I)
Si

where ( ) reflects 2 round trips for each item, Di items per year, and

a cost of t I per unit time. For notational convenience in what follows,

10



define ri I 4tDi/AiQ. Using (11), M(Ql, ... ) becoes

M(Q, ... %), min r ,f]. (5).0., ..., n(LA) i-1l

Due to the analysis in [3], the solution [Sl, i-1, ... , n), to the right

hand side of ( 5) can be found by:

i) Ordering the items such that

'Eli > i 1 -, .... n-l.( )

ii) Defining as the region of L closest to the I/0 point,

enclosed by a contour of f; defining 2) as the region nesting

about *,and enclosed by another (larger valued) contour of f;

and so on (see Figure 2).

Using ii) and the definition of f, M(Q, ... , Qn) can be found by

integrating the right hand side of ( 5):

.. ,~-( 2 /3(y:v 2 )i) rJ(]' , )3/2  r-1 rA j)3/*.~ ()

i-J

Wh1n 7,e adfn . 0 and so for the single

item ose, (7) apree with our earlier analysis. We emphasize the fact

that the ordering [1], ... , mn in ( 7) Is dependent upon the values

jQ10 *go, Qnand so the functional form of M is known only after Q, 0 .f

are known.

SUsing (7) in (1) along with the as:8med form of P,(Q,) and T(Qt), no

appaent conclusion can be mde bot the properties of T(Q, ... , Qn.

n thoh Pi(Q) and I1(Q,) are convex, it is not clear that the right

11
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hand side of (7) even for a fixed ordering IlI, ... , n] of the itms has

any desirable properties (such as psuedo-conexity) which could be exploited

in optimizing T(Q1 , .. *, %). However, for a fixed ordering (13, ... , fn)

of the items, the function generated by adding the right hand side of (7) to

r P I(%) + I I(Q i,()
i-1

is differentiable, and hence at any local minimum the gradient vanishes.

We exploit this property in the following algorithm. We choose initial

positive values ... , and order the items as [1], ... , (n) such that

6) holds at, . We then form the function defined by adding
( Q) ho*dst

the right hand side of ( 7) to ( 8) and find a local minimum of this function.

If ( 6) holds at this local minimum with the Initial ordering, stop. Other-

wise reorder the iteM& o that (6) holds (formin a new function) and find

a local minim of the new function, etc.

k k k
Formally, at some iterate Q , ... , ,J let p be an ordering

of the items such that ( 6) holds and let 7 be the function defined by

adding (8) to the right hand side of ( 7) with the ordering induced by

k. Let ik* be the function value of Tk at a local minimm of T. Define

k+l k k... k+l] the vector which attains T*.
as Q (Q.j, I.. % 3T

Step I Choose an initial starting point Q > 0. (A natural starti

point is .rga fract ion of the solution ot.ird tiY mlffi li10.

k
___ (F). s'et ik = 1 iind de.termin 0

Step 2 Form Tk.

Step 3 Find a eand Qk~

Step 4Determine okl k stop. otherwise, set k - k + 1

and go to Step 2.

- I 12



In the above algorithm, at some iterate Qk it may be the case that

more than one ordering of the itma satisfies ( 6). in this case we adopt
kthe convention that p is M ordering of the items which satisfies ( 6).

k+1 k
In Step 4, by p m p we mean that if I, i 1, ... , is the ordering

k k.& k- ,k
of the itme induced by Vk than at, D t

AtilQF .Oll ., n-.

A property of the algorithm is that the objective function strictly decreases

at each transition fro Step 4 to Step 2 (reordering of items). The reason

for this is that pk+l = pk is a necessary condition for optimality. We
establish this fact in what follows.

Consider any Q - J%, ... , Qn , where Q> O, i - I, ... , n. In ii)

let [i] - i, i - l, ... , n and let (.' .... II) be the amber of Hn(L,A)

defined by ii). That is, the sets S are enclosed by contours of f and

Ii+l nests aout i, I - it . n 1.

Suppose that for ame j n-l, r 34r+, 1 . Let , ... , ) be the

=br of n(LA) where S - for all or l, 1  nests about

S Snests about 8 and S and S are enclosed by contours of f.

(Generating S "'" n from c "', n can be thought of as leaving
: 4 as is for all A or J+1; finding the contour of f such that the region

J-1 . 3-1 .
enclose by f, suroudia UU 8 ssofaresa A j1Q j+ nd do-

noting this region as 8 Is the the region MA

gurrounded by U , Oive this const t, we now estabish a realt

which leeds to a necessary condition for optimlity.



pony 2

i J'f - : r, f > 0. (9)

Proof: Sime % 9 A or +1, the left hand side of ()beomes
, If +i r,,1 if - ,if-rJ+ f-(0

, I -r, .If + r It-r , If o ., a t()b ,

ftfeJ equal ,Jwff to (10) (1ve)

itoth105 5 ,f - (rt,, - tat I e A i

him eal saI equt (0)al
(r,+, -rAlfmr 4 7)f.af -rh If (1)

i 'S

Due to the fact that f Is strictly ri 1 a.... ry .. In L

originatin at (0,0) swd fartber that the ame of - areaof ae

or 1 ares. of and1 , area of ,+ .3  are of It follbw t
44for a*itrw (NOY) f 134 1 adarbitray (z y)

FlMrtbeinOM w there e~dst subsets of eqml positive area is I+ am

over wich (13) hafts at strict Ifhquality. ~S the tern In bmakets

In (12) is strictlyr poitive. Since r3 1 r, > 09 (1.2) Is strictly greater

* tam serot estbihing 9)



Pr ope rty 2 Is the key to the following remit 4bich establishes that

the heuristic Is strictly decreasing in each Iteration.

Waet If Pk k+1lthen()~

111)1* 0.

Proof: By definition, -kQ~) in addition,* it follows that

7~4l(Qk+) *, and thus to establish (iti), it Is sufficient to show

that

#(Qk+1) > 0.llk+) 15)

Without loss of generslity, suppose that k Induces the ordering ii = is

k k4.l
i - i, ..., n. Since p ,thereeists some jn- such that

k~l
r, r<+i where the r terms are evaluated at q . Suppose that there is

only one such .1 with this property. Thus the ordering pk~l can be obtained

b7 interchanging the order of j and J1.

ame to the form of -? and 2+',
S (Qk+). +,(Q,+. ) I , (16)

where ind [ are as in Property 2. But, by Property 2, the right

Shand side of (16) Is strictly eater than Sewo. mus (15) and henoe (1.4)

holds.

in the case where there is more than one j < n-l where r3  + the

ordering pk l can be obtained by making VaLrvise interchanges of "adjacent"

items where this property holds. 3ch such Interchange strictly decreases

the material hadling cost associated with the generated layout. Thus (1h)

I holds In this nasso as weil.

-: - " .. ... " . .. . . " f II ~ l / I.. .l l l l l l .. ;1 5i



A FORTRAN program Implementing the algorithm has been written and

tested on the DAIHL 470 computer. In the algorithm, Newton's method [1]

was used in Step 3. Fifty-eight problems with n - 5 were run with an aver-

age computation time of .02 seconds per problem. In these problems Ai - 1

for all i; Ci, Di, ki and t were randomly generated. Seventeen of these

problems required at least one reordering of the items (transition from

Step 4 to Step 2) prior to termination. In one problem (.03 seconds) the

items were reordered 4 times and the total cost was reduced by one half

(initial solution was evaluated at the EOQ values for the items). To test

computation time sensitivity to the size of n, problems of various dimen-

sionality were run. The results of these tests appear in Tbble 1.

16



r. ravel Dmiizance

mIn this section, we formlate and analyze a special case of the model

presented in Section 3. We also discuss proce res to find the optiml

solution which are ccmptationally feasible for sedium sized problms.

As in Section 3, suppose that the crane travel Is Tahebyehev with

horizontal and vertical speeds of v, and v2,respeetivel , As before, let

L denote the set of points in the storae rack. Given an point (x,y) EL,

let &(xgy) and %(xsy) be the horizontal and vertical distances, respect-

ively, frm (x,y) to the I/O point. The basic assumption in this section

is that either:

c1l(x*,y)/v> 62(xy)/v2 for all (xy) cL, ()

or %(x h)/v2 > d,(x,y)/V1 for all (xy) CL. (18)

Te essence of (17) or (18) above is that either the horizontal travel

tie dominants the vertical travel time or vice versa over every location

In the sorage rack. In this section, vw asime that (17) holds. This

sitution could occur for several reasons. First, slpose the I/0 point

for the crane is located at the end of a conveyor belt which is not

adjacent to the storage rack but instead Is of horizontal distance W

from the storage rack. Further, suppose that the heigbt of the storae

rack is H (see Figure 3). 2hen, If btaeus horiAetal. and vertical

travel Is allowed between the I/O point and the storage rack, and if

W/v1 t3 /T2 , then (7) ,a1 m.bads. ,is is , , to thef t t hatfor

aW (x,1y) EL, 1(x,) I W and (x,7) .a NMA thu

*.,_(z,v)/-v >..i V/v1>./ 2  %(z,.)/v2 establishing (17). In another

sitvating, it say be that the horizontal speed of the crane, vls is wah

slower than the vertical speed, v2. n this case Y(.,,)/, "approi "ate

; 17



the travel t~ae to eny poInt In L.

we now fom~lte the model as suing that (17) holds. Referring to

Figure 3,, the 1/0 point has coordinates (0,0). Any point (x,y) EL has

coordinate WV<xand 0 <Y IH. Due to (17), x/vI.4Y/2and oa 1 2

the one way travel time between the 1/0 point and (x-9y) EL is f(xqY) - x/v1.

Noting that the contours of f are vertical lines, It follows that the solution

'1'82 ... 9 S n) to the righit hand aide of (5) for a given (Q1, ... ,qn

can be found by ordering the items such that (6) holds, and defining

a [ (X*;)EL I - W + (P1t3/t 9 and

(xyE L1V+r r~iL/ xW + E AtiQijAID 0 <Y 1 ),

j a 2, ... ,9 no (49)

A closed form expression for M(Q1, .. %)can be found by using (19)

in (5), carrying out the integration in (),and rearraning terms:

I + (QlJA~l)(It~lDC1) * Bt[2 3DC23 + .. + 8 t[u 2V1K

+ (12A2)(t2D2 + 
8 tC3 3D C3 3 + .. + 8t~n]D1 n3)/2v1 N3

+

+. (1n~t]( nD )/2v1 H, (20)

with the understanding that ( 6) holds.

We now formulate (1) for this travel dominance case with P1 (Q1 ) amd

1 (Q1) as before. Using (20), we obtain, upon rearranging

n n

i~ii4VI~)9i/ + E Oril±/qriJ

+ E (11:L3/ 2 )(kti3 + (A 13/Vl)(It13D L3 + "E S 3)
i~~1 18 jai+tt)Rj



We emphasize that the right hand aide of (21) Is a valid description

of T at (q1, ... , %), q > O, - 1, ... , n, if only if the Items are

indexed such that ( 6) holds. Note that the first term in (21) is constant

for any ordering of the items and thus the TYJ notation can be dropped

from this term. Also, for any fixed ordering r1, ,2l, ... , rn of itm,

the right hand side of (21) Is convex, differentiable and separable.

Further, for a fixed ordering of the items, the values of Q J 1, ... , n

that minimize the right hand side of (21) are easily obtained from the

nov classical UOQ formulas.

The above discussion suggests a procedure for finding the minim of

T(Q2t ... , qn). Let P P PnI be a permutation of the integers
n 1

1,2, .. , n. Let (q * ." Q be the values of (%, ., % ) which

minimize the right band side of (21), where P. replaces ri in (21). Define

T' as the value of the right hand side of (2l) at (Q*, ... , Q 6). Then

the minima of T(Q1, ... , %) can be found by solving

min
P T

S.t.

ri > r , *1 - 1, ... n, (22)

iiwhere r~ Is compted at q.

bus, to find the minium of T( , ... , ), we could generate every

POT~ttiO Pa P2. 0*9 Iofthe intern 1, .. n. find T* for afl P,

and choose from among those permutations P where (22) holds, the permtation

yielding the minim T. However, it follow from property 3 that (22) must

bold at (Q q It P is the optim permutation. To see this, It

19



follows from Property 3 that if (22) does not hold for some 3 <n-1, the

ordering of J and J+l can be interchanged thereby decreasing the material

handling portion of T. ThUS it Is only necessary to compute T for all per-

mutations P and choose the smallest.

For a fixed permutation P, and , ... , are easily obtained

for the following formulas:*i -2C iD i/k + A/11) P n( ntpDp MIf11 .(3

+ iL~c CDp (kP (A i/vlH)(&tpi+ +8( t D )))in .. n (23)

t P, in a P I Jii+l P

TP a r e ti D/v

nF n+ E [ 2C D P (k P + (A /v1H)Q4t~ D~ + 8( F t~ D))i. (214)Jul 1 i I I iP Jui~l 3Jp
Note that (23) and (214) are closed form expressions In terms of the

data- Tu,. solving the problem involves computing (214) for every permu-
tation, P, selecting a permutation which gives the iia T* and then
choosing the optimal item quantities according to (23). Obviouslyo this
procedure involves 0(n!) computaon, which is computational feasible

for relatively small problems.

Ve now outline a computational procedure which involves somewhat less

work than the above. The above problem can be interpreted as single pro-

cessor scheduling problem with monotonic increasing deferral costs. pur-
suant to this goal, for a given permutation, P, define for Jai, ... , n,

P D Pi " /H) ) ; and p 16C D A /H

With these definitions, (21k) becomes

P;K V + (25)li iJai

20



wher K i thecontant~ ke 1 1 . The interpretation of (25) as a ached-

uling problem In relatively straigbtforvard. -V represents the ')prod.ss-

Ing tim" of job Pi. If job Pn is scheduled first on the machine, job

p~1 second, ess, and job P1 last, then E y., represents the "flow time"
Pn~l I -1 3

of the job which Is scheduled in position n-1+l on the machine. pP e

presents a unit penalty cost of flow time.* We can think ofro as repre-
P1

senting "off-machine" time (perhaps time to package the job after It Is

completed). Finally the square root function represents the increasing

deferral coat function (as a function total time In the shop).

Baker [2] and Lawler t83 have outlined a dynamic propaiWmin rocdur

to solve very general single machine sequencing problem. Since the deferral

costs are monotone nondecreasing and (25) is additi~'e, the dynamic progam-

ming procedure can be applied. Lawler (81 points out that the ccputational

effort of the dynamic pro rIng procedure Is O(n 2k) and that problem of

size n <15 are computationally feasible. Note that the solution to the

dynmic progrmming proce ueill be asequencing rl), [21, .... rni of
the "Jobs" and thus the optimal ordering (peroutation.) of the items will be

the reverse sequence.

Xbre recently, Shuiser [All outlined a branch and bound approach to

* the aerel single machine sequencing problem. Whbile the comuttonal

lmitations of this approach are not encouraging (practical limts appear

to be on the order of 20-25 jobs), "good" heuristic solutions should be

readiy available for larger aized problems.
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